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June 1989 

Statistical Methods in Ophthalmology: An Adjusted Chi-Square 
Approach 

Allan Donner 

Department of Epidemiology and Biostatistics, The University of Western Ontario, 
Kresge Building, London N6A 5C1, Canada 

SUMMARY 

Ophthalmologic studies often compare several groups of subjects for the presence or absence of some 
ocular finding, where each subject may contribute two eyes to the analysis, the values from the two 
eyes being highly correlated. Rosner (1982, Biometrics 38, 105-114) and Dallal (1988, Biometrics 44, 
253-257) proposed procedures for testing whether the proportion of affected eyes is the same among 
the different groups, while accounting for the intrasubject correlation. In this paper we propose an 
alternative approach, based on a simple adjustment of the standard Pearson chi-square test for the 
equality of proportions. The suggested approach utilizes information on subjects who supply only 
one eye to the analysis, and readily generalizes to studies in which more than two units of analysis 
are provided by each subject. 

1. Introduction 

Rosner (1982) pointed out that the fundamental unit for statistical analysis in ophthalmo- 
logic studies is often the eye rather than the person. If the purpose of the study is to compare 
G > 2 different groups of patients on some finding in an ocular examination, then an 
individual may contribute information on two eyes to the analysis, their value being, in 
general, highly correlated. In this case standard methods of analysis in which each eye is 
considered as an independent random variable are not valid. Dealing with the case of a 
binary outcome, Rosner (1982) proposed a model for testing whether the proportion of 
affected eyes is the same among the G groups of patients, while accounting for the 
intraperson dependence. Le (1988) extended this methodology to testing for a linear trend 
among the G proportions. The methodology has also been extended (Rosner, 1984) to 
situations where more than two units of analysis are provided by each individual, and 
which allow for covariate adjustment. 

In this paper we deal with the case of a single binomially distributed eye-specific outcome 
variable, to which Rosner's (1982) results are applicable. Dallal (1988), criticizing the 
appropriateness of Rosner's model for this case, proposed an alternative approach based 
on compound multinomial sampling. In this paper we propose an alternative to these 
approaches, based on a simple adjustment of the standard Pearson chi-square test for 
homogeneity of proportions. The validity and power of the three proposed procedures are 
investigated using simulation. 

2. Theory 

Denote the number of subjects in the ith group by ni (i = 1, 2, ..., G), where N= Ei ni 
is the total number of subjects in the study, each contributing one or two eyes to the 

Key words: Intraclass correlation; Ophthalmology. 
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analysis. Let YiJk = 1 if the characteristic of interest is present at the kth eye of the jth 
subject in the ith group (i = 1, 2, . . ., G), and 0i = Pr(YiJk = 1). Our primary aim is to 
test Ho: 01 = 02 = = OG vs HI: Or $ Os for at least one pair (r, s). We first consider the 
approaches suggested by Rosner (1982) and Dallal (1988). 

2.1 Rosner's Approach 

Rosner (1982) assumed a "constant R" model, which states that Pr(YiJk = 1 I Yij(3-k) = 1) 
= R0i for some positive constant R. If R = 1, then the eyes are completely independent, 
whereas if Ri0 = 1, then the eyes are completely dependent. Let nil denote the number of 
persons in the ith group with exactly / affected eyes (i = 1, 2, . . ., G; / = 0, 1, 2), where 
ni = E 2o nil. Rosner (1982) estimated the "effective number of eyes per person" under this 
model by 

2X(1 - X) 
e=k 

(I _- X) + (A-1)X2' 

where X = 2z (nil + 2ni2)/N, R = 4NE ni2/(E nil + 2 E ni2)2 are the maximum likelihood 
estimators of X, R, respectively, under Ho. An approximate test of Ho is then given by 
referring 

.X( 
ni(X ( 1) 

to the chi-square distribution with G - 1 degrees of freedom, where Xi = -(niI + 2ni2)/ni. 

2.2 Dallal's Approach 

A basic assumption behind Rosner's model is that the probability of success at one eye 
given a success at the other eye is proportional to 0i. Dallal ( 1988) criticizes this assumption, 
pointing out that the constant R model will give a poor fit if the characteristic is almost 
certain to occur bilaterally with widely varying group-specific prevalence, because Roi 
cannot be close to 1 for all i unless the 0's themselves are nearly equal. Suppose instead 
that the probability of a success at one eye given a success at the other eye does not depend 
on Oi, i.e., define Pr(YiJk = 1 I YiJ(3-k) = 1) = ri (i = 1, 2, ..., G). Dallal (1988) then 
proposed an analysis based on the following sequence of models: 

Model 1: 1 = 02 = =OG; T = T2 = =TG = T 

Model 2: Or $ 0s for at least one pair (r, s); il = T2 = * = sTG = ST 

Model 3: Or $ 0O for at least one pair (r, s); T, $ rd for at least one pair (c, d). 

Letting "-" denote summation over the corresponding subscript, the expected values of 
the frequencies ni, have maximum likelihood estimates given by 

Model 1: B11 = n, nl 
n 

Model 2: Eio =ni, 

EBl (nil + n2)(n.1) 
n.I + n.2 

(nil + ni2)(n.2) 
12 

n. + n2 
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Model 3: Ei, = nil 

Testing Ho: 01 = 02 = * = G is equivalent to testing whether the proportion of 
unaffected individuals is the same in all groups, given a constant ratio of unilateral 
occurrence to bilateral occurrence, i.e., given a common r. The desired test can therefore 
be obtained by comparing Model 1 vs Model 2 with the appropriate likelihood ratio 
statistic. Dallal (1988) shows that this statistic is given by 

G 2 E 
D= 2 E E nilloge I())l (2) 

1= I 1=0 E2 

where D is referred to tables of the chi-square distribution with G - 1 degrees of freedom. 
Model 3 is not directly relevant to Ho, but is useful for testing other hypotheses of interest. 

2.3 An Adjusted Chi-Square Approach 

In this section we present an alternative approach to testing Ho based on an adjustment of 
the usual Pearson chi-square statistic by an empirical estimate of the intraclass correlation 
between responses on two eyes of the same person. One advantage of this approach, aside 
from its intuitive attractiveness, is that it can be extended in a very simple fashion to handle 
the case in which an arbitrary number of units of analysis are provided by each person, as 
for example, in dental data. In Section 3, we compare the validity and power of all three 
approaches using Monte Carlo simulation. 

Using a basic general approach, we assume that the clustering within an individual may 
be modelled by assuming that (i) for each pair of eyes the distribution of the number 
of successes is binomial with probability parameter P and (ii) the parameter P varies 
among individuals according to some (possibly unspecified) distribution on the interval 
(0, 1). If the expectation of P is p, then the variance of P is no greater than p(1 -p), 
so that var(P) = pp(l - p), where p is a real number, 0 < p < 1. We call p the intra- 
person correlation coefficient, which is assumed constant for all individuals in the 
sample. Now suppose individual j in group i contributes mij measurements to the anal- 
ysis (j = 1, 2, ..., ni; i = 1, 2, .. ., G), where mij = 1 or 2. Then the total number of 
measurements in the ith group is given by Mi = E j"_I mand the total number of successes 
by Ai = E lni. If p = 0, then Ho may be tested by the standard Pearson chi-square statistic 
with G - 1 degrees of freedom, given by 

G 

X2= X 
1= 1 

where 

X-2 =(Ai - 0)2 (Mi - Ai- 
Mio MiQ 

and 0 = Z Ai/ Ml, Q = 1-0. If p > 0, X2 is no longer approximated by a chi-square 
distribution, but can be appropriately adjusted so that a modified form of the test can be 
applied. Let Ci = zj mijC'J zj muj, where Cij = 1 + (mij - l)p. Then it follows from Brier 
(1980) that XA = i Xi/Ci approximately follows a chi-square distribution with G - 1 
degrees of freedom under Ho. To use this result in practice, however, an estimate of the 
unknown parameter p is required. We recommend an estimator that corresponds to the 
standard analysis of variance estimator of an intraclass correlation for a stratified cluster 
design (Donner, 1985). Let Oij = ai1/mij denote the proportion of successes for individual j 
in group i (j = 1, 2, ... ., n1; i = 1, 2, . .., G), 0, = A1/Ti the overall proportion of successes 
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in group i, and M = ZEij mij the total number of observations in the sample. Then the 
mean squared error among persons within groups and the mean squared error within 
individuals are given, respectively, by 

MSC = EEiJ mi(0 ij-i)2 

MSE = E J aij (I - Oij) 
M-N 

An appropriate estimate of the intraperson correlation is then given by 

A MSC-MSE 
P MSC + (mA - 1)MSE' 

where 

-~~~~~~ _-Zi (Ej Ml21Mi) 
mA (3) 

Thus, an approximate test of Ho is obtained by substituting p$ for p in Ci and referring 
X2 to tables of the chi-square distribution with G - 1 degrees of freedom. We refer to this 
procedure as the adjusted chi-square test. 

A special case of this test occurs when each individual contributes exactly m = 2 eyes to 
the analysis. The expression for X2 then reduces to X2/(1 + p), where 1 + p is the "variance 
inflation factor" associated with the intraperson dependence. A further simplification is 
that the mean squared errors MSC and MSE required for the computation of p reduce to 

= 12= nil- ( En)2/(2ni)} MSC = 

N-G 

and 

MSE- = -n 

Example We reanalyze the data presented by Rosner (1982) on 218 persons aged 20-39 
with retinitis pigmentosa (RP), seen at the Massachusetts Eye and Ear Infirmary from 1970 
to 1979. The sample is described in detail by Berson, Rosner, and Simonoff (1980). The 
patients, one from each of 218 separate families, were classified into the genetic types of 
autosomal dominant RP (DOM), autosomal recessive RP (AR), sex-linked RP (SL), and 
isolated RP (ISO). The distribution of patients by genetic type and number of affected eyes 
is given in Table 1. 

Table 1 
Distribution of the number of affected eyes for persons 

in each genetic type (Rosner, 1982) 

nio ni l ni2 ni 

DOM 15 6 7 28 
AR 7 5 9 21 
SL 3 2 14 19 
ISO 67 24 57 148 
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The test statistic proposed by Rosner (1982) may be computed for these data from (1) 
as T = 11.36 (P = .01), while Dallal's statistic may be computed from (2) as D = 8.86 
(P = .03). The adjusted chi-square statistic X2 depends on the estimated intraperson 
correlation, which may be obtained from (3) as p = .647. The value of X2 is then given by 
X2 = 1 1.43 (P = .01). Thus, the results from each test are in agreement that the prevalence 
rate of affected eyes varies significantly according to genetic type. Further analysis indicates 
that the significant variation can be largely attributed to differences between the SL group 
and the other groups, again consistent with Rosner's results. 

3. Comparison of the Methods 

In this section we report the results of a simulation study estimating the empirical levels of 
significance and powers associated with the statistics T, D, and XA under a reasonably wide 
range of parameter values. We assumed for the purposes of this study that the parameter P 
varies among individuals according to a beta distribution so that the number of successes 
aiJ contributed by m = 2 eyes of a given individual follows a beta-binomial distribution 
with density 

12 Fr(aij+00~ F(aij + aJF(2 -a1- +0flj) 
Pr(a1j =\a) F(c,,)F(:311)F(2+c), +f) i , j= 1,2,. .,n; =1,2, ...,G. 

Under this model, which allows considerable flexibility and is widely used to model 
dependent data (e.g., Griffiths, 1973; Moore, 1987), the expected probability of a success 
in a randomly chosen individual is given by Oij = aij/(aui + Oij) and the intraperson 
correlation coefficient by p = 1/( I + aij + /ij). For the purpose of the present investigation 
we set 6iJ = 6i (j = 1, 2, ..., ni), so that each group of subjects was characterized by a 
single prevalence parameter 6i and a common intraperson correlation parameter p. 

Each experiment in the simulation included a test of Ho: 01 = 02 = ' = 6G at the .05 
level of significance, and was repeated over I = 500 independent iterations at each parameter 
combination. This choice of I assured that a deviation of .02 or more between the empirical 
significance level for a given procedure and a nominal level of .05 would be statistically 
significant (a = .05, two-tailed). We performed the simulation on a CDC 1035 computer, 
using a FORTRAN 5 compiler and random number generator GGUBS from the International 
Mathematical and Statistical Library (IMSL). 

One limitation of procedure D is that it cannot be computed if (i) either nio or nil + ni2 
equals 0 for any i = 1, 2, . . . , G; or (ii) either ,G l nil or ,= I ni2 equals 0. We dealt with 
this problem in the simulation by setting nil = 

I for nil = 0 (i = 1, 2, ..., G; /= 0, 1, 2). 

4. Results 

Table 2 shows the empirical significance levels associated with the statistics T, D, XA, and 
X2 for testing HO: 61 = 02 = .= G at a = .05 for various values of G, ni = n (i = 1, 2, 
... . G), and p. The underlying prevalence rates 6i are equal to .3 and .5. The significance 
levels associated with the unadjusted statistic X2 are presented only to show the effect of 
ignoring the intraperson dependence on the observed Type I error rate. 

It is seen from this table that Rosner's statistic T, Dallal's statistic D, and the adjusted 
chi-square statistic X2 all give empirical significance levels reasonably close to nominal. As 
expected, the significance levels associated with the unadjusted chi-square statistic tend to 
be very much greater than nominal. 

Table 3 shows the empirical powers associated with T, D, and X2 for two different 
configurations of the 6i at each value of G = 4, 8. It is interesting to note that the powers 
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Table 2 
Empirical significance levels for testing H0: 0 = 02 = = = 0 corresponding to 

nominal .05 significance level based on 500 replications 
0 = .3, G= 4 0 = .3, G= 8 0 = .5, G =4 0 = .5, G= 8 

p n - 20 n =40 n = 20 n =40 n = 20 n =40 n = 20 n =40 
.5 T .052 .046 .052 .052 .064 .054 .056 .070 

D .064 .064 .054 .068 .056 .062 .058 .066 
XA .056 .046 .054 .060 .064 .056 .060 .070 
X2 .160 .190 .232 .260 .144 .190 .224 .248 

.7 T .044 .060 .048 .048 .046 .050 .048 .056 
D .052 .070 .054 .052 .050 .064 .054 .074 
XA .048 .062 .050 .048 .046 .050 .052 .056 
X2 .236 .220 .362 .348 .204 .208 .342 .372 

.9 T .064 .064 .052 .050 .036 .062 .028 .050 
D .062 .056 .046 .048 .038 .048 .030 .052 
XA .066 .064 .052 .050 .036 .062 .028 .050 
X2 .274 .256 .464 .440 .262 .276 .416 .450 

.95 T .060 .052 .054 .048 .044 .054 .036 .038 
D .054 .048 .050 .044 .048 .044 .046 .042 
XA .060 .054 .054 .050 .044 .054 .036 .038 
X2 .290 .266 .496 .454 .258 .262 .448 .468 

Table 3 
Empirical powers for testing HO: 01 0 = ... = * G= 0 vs HIA, HIB corresponding to 

nominal .05 significance level based on 500 replications 

HIA* HIB** 

G=4 G=8 G=4 G=8 

p n = 20 n = 40 n = 20 n = 40 n = 20 n = 40 n = 20 n = 40 

.5 T .568 .900 .818 .988 .396 .740 .604 .924 
D .560 .916 .794 .992 .402 .726 .576 .908 
XA .572 .902 .820 .988 .398 .742 .616 .926 

.7 T .554 .868 .730 .976 .386 .708 .572 .882 
D .532 .868 .718 .986 .382 .690 .560 .874 
XA .562 .868 .736 .976 .392 .708 .578 .882 

.9 T .476 .832 .672 .972 .362 .628 .520 .842 
D .454 .830 .640 .970 .356 .636 .514 .832 
XA .484 .834 .676 .972 .370 .628 .520 .846 

.95 T .496 .824 .670 .966 .360 .596 .488 .828 
D .468 .810 .614 .968 .348 .600 .484 .822 
XA .498 .824 .670 .966 .360 .596 .488 .828 

* HA prevalence rates (G = 4): .1, .2, .3, .4; (G = 8): .1, .2, .3, .4, .1, .2, .3,.4. 
** HIB prevalence rates (G = 4): .2, .2, .4, .4; (G = 8): .2, .2, .4, .4, .2, .2, .4, .4. 

of the three procedures are generally very similar. However, the powers associated with 
X2 are usually slightly higher than those associated with the other two test statistics. It is 
also interesting to note that the powers associated with the statistic T tend to be slightly but 
consistently higher than those associated with D. 

5. Discussion 

The basic clustering model discussed in Section 2.3 is well known, where alternative 
distributions for P are the beta, the logistic-normal, and the probit-normal [see Williams 
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(1988) for a recent review]. The results of the investigation above show that it leads to an 
effective procedure for comparing several different groups of patients with respect to the 
prevalence of a specified ocular finding. It tends to be at least as powerful as other specialized 
procedures proposed for this problem and, as a natural extension of the standard Pearson 
chi-square test, is perhaps more intuitively attractive. 

A very practical advantage of the adjusted chi-square test is that it utilizes information 
on individuals who supply only one eye to the analysis. Application of the statistic T or D 
requires that such individuals be excluded from the analysis, which is clearly inefficient 
unless there is some systematic reason for the missing information. A related advantage of 
the adjusted chi-square test is that it can be applied to studies in which more than two units 
of analysis are provided by each individual, as in the case of dental data. Suppose that 
individual j in group i contributes mij measurements to the analysis (j = 1, 2, . . ., ni; 
i = 1, 2, ..., G). Then the total number of observations in the ith group is given 
by Mi = l mij and the total number of successes by Ai - i l aij. The expressions 
for x2 and p remain as given in Section 2.3, with x2 again referred to tables of the 
chi-square distribution with G - 1 degrees of freedom. 

RfSUMf 

Dans les etudes ophthalmologiques, on compare souvent plusieurs groupes de sujets sur la presence 
ou 1'absence d'une caracteristique oculaire; quand les deux yeux d'un sujet sont examines, les valeurs 
de ceux-ci sont tres correlees. Rosner (1982, Biometrics 38, 105-114) et Dallal (1988, Biometrics 44, 
253-257) ont propose des procedures pour tester si la proportion d'yeux affects est la meme dans les 
differents groupes en tenant compte de la correlation intra-sujet. Dans ce papier, nous proposons 
une autre approche basee sur un simple ajustement du test du chi-deux standard de Pearson pour 
l'egalit6 des proportions. L'approche suggeree utilise l'information des sujets qui contribuent pour 
un oeil seuleiftent a l'analyse, et generalise facilement a des etudes oui on analyse plus de 
deux resultats par sujet. 
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